A unified analysis of spontaneous and super-radiant emissions in free-electron lasers

نویسندگان

  • Y. Pinhasi
  • A. Gover
چکیده

A generalized formulation of spontaneous emission and super-radiance effects in a free-electron laser is presented. We consider a stream of electrons of arbitrary temporal duration propagating through the undulator. The sum of the undulator synchrotron radiation emitted by individual wiggling electrons entering the wiggler at random, results in shot-noise in the radiation field. Using the waveguide excitation equations formulated in the frequency domain, an analytical expression for the power spectral density of the electromagnetic radiation is derived. It is shown that for a finite pulse electron beam current, the spectrum of the excited radiation is composed of two terms which are the spontaneous and super-radiant emissions. For an infinitely long e-beam pulse (continuous beam), the shot-noise produces only incoherent spontaneous emission. The power of this radiation is proportional to the DC current I,, of the electron beam. For shorter e-beam pulses, a partially coherent super-radiant emission is also produced with an average power which is proportional to 16. The coherence of this super-radiant emission is enhanced as the pulse duration is reduced. A single formulation describes the coherent features of the super-radiance and the statistical features of the spontaneous emission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super-radiance in a prebunched beam free electron maser

It is well known that electrons passing through a magnetic undulator emit partially coherent radiation: `Undulator Synchrotron Radiationa. Radiation from electrons, entering the undulator at random, adds incoherently. If the electron beam is periodically modulated (bunched) to pulses shorter than the radiation wavelength, electrons radiate in phase with each other, resulting in super-radiant em...

متن کامل

Characteristics of Dual Amplified Spontaneous Emission from MEH-PPV Solutions

We report the observations of dual wavelength amplified spontaneous emission from the solutions of a conjugated polymer poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in Tetrahydrofuran and 1, 2 Dichlorobenzene. We have prepared MEH-PPV using a modified procedure and purified several times in each step, the material offers low molecular weight, low polydispersity index an...

متن کامل

Mode-locked super-radiant free-electron laser oscillator

Evolution of the time domain fields and the spectral power of super-radiant radiation in a free-electron laser oscillator (e-beam pulses shorter than a wavelength) are investigated. We consider a finite train of N short bunches of electrons propagating through the undulator. The coherence of the synchrotron radiation emitted from the bunched beam grows with the number N of the e-beam pulses ent...

متن کامل

A quantum mechanical analysis of Smith–Purcell free-electron lasers

The paper presents a quantum mechanical treatment for analyzing the Smith–Purcell radiation generated by charged particles passing over a periodic conducting structure. In our theoretical model, the electrons interact with a surface harmonic wave excited near the diffraction grating when the electron velocity is almost equal to the phase velocity of the surface wave. Then, the surface harmonic ...

متن کامل

Multimode Emissions from MEH-PPV Blended with Polystyrene Film Waveguides

In the context of conjugated polymers, especially those of the poly (phenylenevinylene) (PPV) family, which are promising candidates as emission material in light emitting devices such as LEDs, field effect transistors and photovoltaic devices, we have, in the present study, prepared MEH-PPV [Poly [2- methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylen-evinylene] of low molecular weight and low polydisp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003